RZ/G2LC SOM Hardware User Manual

Revisions and Notes 

Date

Owner

Revision

Notes

Nov 23, 2022

Noam Weidenfeld

1.0

 

May 15, 2023

Yazan Shhady

1.1

SOM step file uploaded

Nov 2, 2023

Shahar Fridman

1.2

Add Power Consumption Measurement

Jan 17, 2024

Yazan Shhady

1.3

Add SOM Rev 1.2 changes:

  • Moving RZ_P39_2 from J7[28] to J7[18] to support USB_PWR_EN on HBP

  • Change the voltage level of the MD0-MD2 from 1V8 to 3V3

Nov 18, 2024

Yazan Shhady

1.4

Updated the documentation to reflect the eMMC speed mode as HighSpeed

Table of Contents

 

Introduction

This User Manual relates to the SolidRun’s RZG2 series, which includes

  • RZG2LC Dual core ARM A55 (1.2GHz) w Cortex-M33 (200MHz)

  • RZG2UL Single core ARM A55 (1.0GHz) w Cortex-M33 (200MHz)

Overview

The SolidRun’s RZ/G2LC family is a high-performance 64-Bit Renesas RZ/G2 Based SOMs with Integrated GPU for Next-Gen Human-Machine Interfaces.

Ideal for automation, smart buildings, network cameras, and IoT devices, SolidRun RZ/G2 SOMs combine a powerful MPU, GPU, extended ECC, Ethernet, and offer long-term Linux software support.

Highlighted Features

  • Ultra-small footprint SOM (47x30mm) including three board-to-board connectors (250 total pins number).

  • Renesas’s SoC supports Solo and DUAL versions.

  • Up to Dual Cortex A55 and up to 1.2GHz

  • Cortex-M33 subsystem processor supports real time tasks.

  • High security engines.

  • A single Ethernet interfaces.

  • Up to two CAN interfaces.

  • High industrial reliability with in-line ECC on DDR4 and on on-chip RAM.

  • Single MIPI-CSI and single MIPI-DSI (NO encoder/decoder)

  • Two USB 2.0.

  • DDR4 memory in x16 configurations supports up to 2GB and up to 3.2GT/s.

  • Up to 64GB eMMC (HighSpeed Mode, up to 52MHz).

  • Wi-Fi 11b/g/n + Bluetooth 5.2 certified module

  • 1Mb QSPI NOR Flash

  • 1Kb I2C EEPROM

  • Real time Clock and a rechargeable battery

  • Power management devices

  • Commercial and industrial temperature grade support.

 

Supporting Products

The following products are provided from SolidRun both as production level platforms and as reference examples on how to incorporate the SOM in different levels of integration:

  • HummingBoard Ripple – A board computer that incorporates the SOM retains the same Android and different Linux distributions while adding extra hardware functionalities and access to the hardware.

Description

Block Diagram

The following figure describes the RZ/G2LC Blocks Diagram.

 

Features Summary

Following are the features summary of the SOM. Notice that some of the features are pinout multiplexed (please refer to the pin mux table below and the Renesas’s data sheets):

  • Renesas’s RZG2 series SoC (Dual/Single ARM® Cortex™ A55 Processor, up to 1.2 GHz)

  • Cortex-M33 (200MHz) subsystem processor.

  • Up to 2GByte DDR4 memory and up to 3.2GT/s

  • Eight bits eMMC 5.1 (HS Speed Mode) memory or a four bits SD interface

  • 1Kb I2C EEPROM.

  • 8Mb QSPI NOR Flash

  • 4-lanes MIPI-DSI interface

  • 4-lanes MIPI CSI-2

  • Single 10/100 Mbps Ethernet PHY

  • Wi-Fi (802.11a/b/g/n) + BT (5.2) Murata's certified module

  • Two USB 2.0 Host and Device

  • Single eSPI interface.

  • Up to four Serial interfaces.

  • Up to 2 CAN-FD.

  • RTC w a rechargeable battery

  • Power:

o A single 5.0V input using B-t-B connector

o 3.3V/1A output to support carrier's digital interfaces.

o 1.2V/0.5A output

o RAA215300 PMIC

Core System Components

RZ/G2LC SoC

Ideal for automation, smart buildings, network cameras, and IoT devices, SolidRun RZ/G2 SOMs combine a powerful MPU, GPU, extended ECC, Ethernet, and offer long-term Linux software support.

 

A verified Linux Package (VLP) reduces cost and simplifies design

 

MEMORIES

The RZG2L SOM supports varieties of memory interfaces for booting and data storage. The following figure describes the RZG2L memory interfaces.

DDR4

  • Up to 2GB memory space.

  • 16 Bits data bus.

  • Up to 3600 MT/s.

  • ECC function for single-bit and double-bit error reporting, single-bit error correction, and programmable removal of ECC storage

  • Support various low power modes, clock, and power gated operation.

  • Support Self-Refresh mode.

 

eMMC and SD NAND Memory

SD0 of the RZG2LC/UL can be configured as an 8-bit eMMC interface or a 4-bit SDIO. Configuration can be done during the boot process (Boot strap pins) or by SW.

Selecting SD0’s physical connection (eMMC or uSD card) is done by an analog switch.

The state of the analog switch can be set by a DIP-Switch, SW or PU/PD resistors.

 eMMC

  • Up to 64GB memory space

  • 8 Bits data bus.

  • Support MMC standard, up to version 4.5.1.

  • Supports High-speed Mode (up to 52MHz)

  • uSDHC-0.

  • Can be used as BOOT NVM **

Micro-SD (Carrier)

  • Optional on the carrier board

  • uSDHC-0.

  • Implements 4 data bits.

  • Support SD/SDIO standard up to version 3.0.

  • SD, SDHC, and SDXC SD memory card access supported.

  • Default, high-speed, UHS-I/SDR50, and SDR104 transfer modes supported

  • Can be used as BOOT NVM **

Quad Serial NOR Flash (SOM)

  • Each channel can be configured as a 1/2/4-bit operation.

  • Support both SDR (66MHz) mode and DDR (50MHz) mode

  • No reset

  • QSPIA/nSS0.

  • Can be used as BOOT NVM **

 EEPROM (SOM)

  • 1Kb EEPROM

  • ON-Semi’s CAT24AA01TDI or compatible

  • I2C0

  • Address 0X50 (7 bits format)

  • Stores SOM’s configurations.

 

Serial NOR Flash (Carrier)

  • Optional on carrier board

  • 1 bit data bus.

  • eSPI1/nSS0

  • Can be used as BOOT NVM *

* Note – eMMC and uSD share the same signals.

** Note – Boot configuration is set by the Boot-strap pins

10/100 Mbps Ethernet PHY

 The SOM supports single fast Ethernet interfaces.

 

 

  • RGMII interface.

  • 802.3 Ethernet interface for 100BASE-TX, and10BASE-T.

  • Analog Device's ADIN1200 PHY.

  • EEE in accordance with IEEE 802.3az

  • Start of packet detection for IEEE 1588 timestamp support

  • 139 mW for 100BASE-TX

WI-FI (802.11A/B/G/N) AND BT 5.2 (MURATA'S CERTIFIED MODULE)

 

WI-FI & BT

 The WI-FI & BT module is Murata’s 1YN module Based on Cypress CYW43439W. hip. The WI-FI main features are:

  • Operate at ISM frequency Band (2.4)

  • IEEE Standards Support 802.11a, 802.11b, 802.11g and 802.11n

  • WI-FI over SDIO-1 interface

  • BT 5.2 BR/EDR/LE

  • BT over UART-2 Interface

  • Global certification.

External Interfaces

General

The SOM incorporates three Hirose DF40 board-to-board headers.

The selection of the Hirose DF40 is due to the following criteria:

  • Miniature (0.4m pitch)

  • Highly reliable manufacturer

  • Availability (worldwide distribution channels)

  • Excellent signal integrity (supports 6Gbps)

    • Please contact Hirose or SolidRun for reliability and test result data.

  • Mating height of between 1.5mm to 4.0mm (1.5mm to 3.0mm if using 70-pin Board-to-Board header). RZG2LC/UL SOM’s headers are fixed, the final mating height is determined by carrier implementation

 

USB-2.0

The RZG2LC/UL supports two USB2.0 interfaces. The following figure describes the USB interfaces.

The USB’s main features are:

  • Single USB 2.0 OTG/DRD(Host/Function) interface (USB0)

  • Single USB 2.0 Host interface (USB1).

  • Support mode: High-Speed(480Mbps)/Full-Speed(12Mbps)/Low-Speed(1.5Mbps).

  • OTG function (Rev2.0).

  • Battery Charging function.

  • B2B Connector’s Signal Description

  • DRD(Dual-Role-Device) function (Static switch between Host and Function).

  • Power control signals are not part of the USB module, any available GPIO can be used.

Note – The voltage on VBUS is 5V.

MIPI CSI

The following figure describes the CSI interface.

 

  • Supports MIPI CSI-2 V2.1 and MIPI D-PHY V2.1 (80 Mbps ~ 1500 Mbps)..

  • Maximum image size: 5 M pixels.

  • Minimum image size: QVGA (320 × 240) = 76.8 K pixels.

  • Maximum number of valid pixels in the horizontal direction: 2800 pixels.

  • Maximum number of valid pixels in the vertical direction: 4095 lines

  • Support 1/2/4 lanes.

  • Support 4 Virtual Channel.

 

MIPI DSI

The following figure describes the DSI interface.

 

The DSI main features are:

  • Display Serial Interface Version 1.3.1.

  • Support up to Full HD (1920 × 1080), 60 fps (RGB888).

  • Maximum Bandwidth: 1.5 Gbps per lane, 4 data lanes.

  • Support Output Data Format: RGB666 / RGB888.

  • Supports 1, 2, 3 and 4 lane configurations.

  • Support for Virtual Channel

 

Audio

Up to 3 serial sound interface (SSIF-2) transmits and receives audio data to and from various devices that are compatible with I2S format, monaural format and TDM format.

The Audio main features are:

  • Master/slave

  • Full-duplex communication is available in interfaces 0, 1.

  • Half-duplex communication is only available in interface 2.

  • I2S format, Monaural format and TDM format.

  • MSB first, data can be left-justified or right-justified.

 

UART

Up to 4 UART interfaces. The following figure describes the UART interfaces.

The UART interface's main features are:

  • UART 2 is connected directly to the WI-FI/BT Modem to support the BT. It is available on the SOM B-t-B connector When the WIFI is not assembled.

  • UART 0 supports TX, RX and is used as terminal interface

  • UART 1 supports TX, RX, CTS and RTS.

  • UART 3 supports TX and RX.

  • Selectable bit rate with an on-chip baud rate generator.

 

SPI

Up to 3 SPI interfaces. The following figure describes the eSPI interface.

 

  • Single chip select nSS0.

  • Master/Slave configurable.

  • Switching of the polarity of the serial transfer clock.

  • Switching of the clock phase of serial transfer.

  • Transfer bit-length is selectable as 8, 16, or 32 bits.

 

I2C

Up to 4 I2C Interfaces. The following figure describes the I2C interfaces.

The I2C main features are:

  • I2C-2 is used only on the SOM. It is connected to the PMIC.

  • I2C-0 is available on the connector and connected to the SOM’s EEPROM.

  • I2C-1 and I2C3 are available on the BtB connectors.

  • I2C bus format or SMBus format.

  • Master mode or slave mode selectable

  • Up to 1 Mbps.

  • Up to three slave-address settings can be made.

  • Internal time-out function is capable of detecting long-interval stop of the SCL (clock signal).

uSD

The uSD interface is multiplexed with the eMMC interface. Only one of them is available.

 

CAN-FD

Up to 2 CANFD interfaces are available. The following figure describes the CAN interfaces.

The CAN main features are:

  • Supports two interface modes, classical CAN mode and CANFD mode.

  • ISO11898-1 compliant.

  • Maximum 1 Mbps in classical CAN mode.

  • Nominal bit rate: max.1 Mbps, data bit rate: max. 4 Mbps in CANFD mode.

CONNECTOR’S SIGNAL DESCRIPTION

J5001

PIN

HBP 2.5

 

RZG2LC 1.2

 

 

PIN

HBP 2.5

 

RZG2LC 1.2

 

PIN

HBP 2.5

 

RZG2LC 1.2

 

 

PIN

HBP 2.5

 

RZG2LC 1.2

 

1

TP4

1V8

NC

 

 

2

NC

 

NC

 

3

DIP-SWITCH

1V8/ 3V3

MD0

3V3

 

4

DSI-CON (J19) or DSI-HDMI

 

RZ_DSI_DATA3_N

 

5

DIP-SWITCH

1V8/ 3V3

MD1

3V3

 

6

DSI-CON (J19) or DSI-HDMI

 

RZ_DSI_DATA3_P

 

7

GND

 

GND

 

 

8

GND

 

GND

 

9

DSI-CON (J19) or DSI-HDMI

 

RZ_DSI_CLK_P

 

 

10

GND

 

GND

 

11

DSI-CON (J19) or DSI-HDMI

 

RZ_DSI_CLK_N

 

 

12

DSI-CON (J19) or DSI-HDMI

 

RZ_DSI_DATA0_N