Bedrock SOM V3000 / R7000 / R8000 - Hardware User Manual

Bedrock SOM

Introduction

This user manual is intended to assist board-designers who consider developing a custom NIO for SolidRun Bedrock SOM.

Bedrock SOM

Bedrock SOM is a system-on-module based on AMD Ryzen Embedded / Mobile processors with FP7R2 footprint. It is a compact self-contained computer system with processing, RAM, storage, power regulation and cooling. It brings out only the native I/O of the processor through high density board-to-board connectors to allow highly-modular system design with a high-degree of system customization by extension boards.

Currently Bedrock SOM is offered with several Ryzen variants including

To learn about the unique properties of each processor please review the corresponding Bedrock PC documentation.

NIO - Networking & I/O Extension Board

NIO stands for Networking & I/O. NIO extension board is connected directly to Bedrock SOM.

SolidRun offers several types of NIO boards. NIO design files are offered as reference for board-designers who considering developing custom NIO boards.

About this User Manual

This manual will guide you through the key aspects of integrating Bedrock SOM into your custom NIO design. It covers essential design considerations, including power requirements, signal integrity, thermal management, and connectivity options, ensuring you can fully harness the power of the AMD Ryzen™ processor in your specific application.

Each section of this manual provides detailed information and technical specifications to help you understand the interfaces, pinouts, and schematic design principles necessary for successful integration. Additionally, we provide best practices and expert tips to mitigate common design challenges and optimize your development process.

Bedrock SOM Block Diagram

 

image-20240523-104242.png
Bedrock SOM - Block Diagram

 

Please note that Port 9 (Lanes: 17-20) are used for the SoM’s Internal NVME.

Feature Summary:

  • Memory: DDR5 Dual 64BG Channels, Support Up to DDR5-5600.

  • USB:
    2x USB4 (40 Gbps) - Supports USB-C Alt-Mode.
    2x USB 3.2 Gen2 (10 Gbps).
    4x USB2.0

  • Display:
    • DisplayPort 0 (DP0) : eDP/DP/HDMI
    • DisplayPort 1 (DP1) : eDP/DP/HDMI
    • DisplayPort 2 (DP2, USBC0) : DP/HDMI; or USB-C with DP alt mode; or USB4
    • DisplayPort 3 (DP3, USBC1) : DP/HDMI; or USB-C with DP alt mode; or USB4
    • DisplayPort 4 (DP4, USBC4) : DP/HDMI; or USB-C with DP alt mode
    Note: Maximum 4 displays can be outputted simultaneously.

  • PCIe: 9 ports, 16 Lanes PCIe Gen 4.

  • Power: DC 12V-24V.

  • Dimentions (83 mm x 91 mm x 12.7 mm) - Including SODIMM Modules.

  • UART: 4 Ports.

  • SPI: Yes.

  • eSPI: Yes.

  • I2C: 2 Ports.

  • BIOS: AMI Aptio V

Mechanical Files

SoM Board Dimensions: 83 x 75.76 mm (Top View):

Mechanical Files Download Link:
Bedrock SOM - Mechanical Files.zip

Typical Block Diagram of a complete system

Bedrock Cartridge

As part of developing a custom extension board for the Bedrock SOM, it’s recommended to use Bedrock Cartridge.

Bedrock Cartridge provides the following:

  • Highly effective 1st stage thermal coupling (TIM0) to the Ryzen die to a copper heatplate.
    Coupling the heatplate to a heatsink/cold-plate is easy. Coupling the die is challenging.

  • Provision for mounting NIO securely with accurate spacing.

  • Easy mounting of SOM to enclosure / heatsink / cold-plate.

  • Thermal coupling for SOM’s DC-to-DC converters

  • Mounting of NVME SSD
    Not present on SOM itself

  • Securing and thermal coupling for SODIMMs

  • RTC battery compartment

  • Physical protection and rigidity to the SOM

  • Rigid chassis for the Bedrock Deck with multiple threaded mounting holes

SOM Board-to-Board Connectors - MFG P/N

Connector RefDes on

Bedrock SoM

MFG P/N

Connector RefDes on

NIO

MFG P/N

Connector RefDes on

Bedrock SoM

MFG P/N

Connector RefDes on

NIO

MFG P/N

J1

DF40C-100DP-0.4V(51)

J5

DF40C-100DS-0.4V(51)

J2

DF40C-100DP-0.4V(51)

J6

DF40C-100DS-0.4V(51)

J3

DF40C-100DP-0.4V(51)

J4

DF40C-100DS-0.4V(51)

J4

DF40C-80DP-0.4V(51)

J7

DF40C-80DS-0.4V(51)

Bedrock SoM Connectors (Males):

NIO Connectors (Females):

Note: Top Side of SoM is placed on Top Side of NIO, where the two boards are flipped one towards the other.

Board-to-board Connectors Pin-out

The following is an example of the B2B pinout in NIO.
Please note that the pinout relates to the female connectors on a carrier, to which the Bedrock SoM male Connectors are inserted, and here we gave an example for SolidRun NIO Connectors (J4, J5, J6, J7). It’s important to be careful which pin is number #1.

NIO R7000 Basic pinout

J5
Pin#
J6
Pin#
J4
Pin#
J7
Pin#
J5
Pin#
J6
Pin#
J4
Pin#
J7
Pin#
VDDBT_RTC
J5-93
DP3_AUXN/USBC1_SBTX
J6-62
DP2_HPD
J4-79
VIN_ALW
J7-64
48M_OSC
J5-77
DP3_AUXP/USBC1_SBRX
J6-60
DP3_HPD
J4-85
VIN_ALW
J7-72
ACP_WOV_DMIC_CLK
J5-91
GFX_CLKN_R
J6-23
DP4_AUXN
J4-81
VIN_ALW
J7-80
ACP_WOV_DMIC_DAT0
J5-95
GFX_CLKP_R
J6-25
DP4_AUXP
J4-83
VIN_ALW
J7-69
AC_PRES
J5-26
GFX_SLOT_RX0N
J6-53
DP4_HPD
J4-87
VIN_ALW
J7-77
AGPIO11_MDIO3_SDA
J5-55
GFX_SLOT_RX0P
J6-55
USBC0_DN
J4-48
VIN_ALW
J7-66
AGPIO17
J5-86
GFX_SLOT_RX1N
J6-59
USBC0_DP
J4-46
VIN_ALW
J7-74
AGPIO18
J5-78
GFX_SLOT_RX1P
J6-61
USBC0_NOVA_RXAN
J4-40
VIN_ALW
J7-63
AGPIO21
J5-1
GFX_SLOT_RX2N
J6-65
USBC0_NOVA_RXAP
J4-42
VIN_ALW
J7-71
AGPIO22
J5-34
GFX_SLOT_RX2P
J6-67
USBC0_NOVA_RXBN
J4-52
VIN_ALW
J7-79
AGPIO24
J5-58
GFX_SLOT_RX3N
J6-71
USBC0_NOVA_RXBP
J4-54
VIN_ALW
J7-68
AGPIO3
J5-53
GFX_SLOT_RX3P
J6-73
USBC0_NOVA_TXAN
J4-47
VIN_ALW
J7-76
AGPIO32
J5-83
GFX_SLOT_RX4N
J6-77
USBC0_NOVA_TXAP
J4-45
VIN_ALW
J7-65
AGPIO4
J5-28
GFX_SLOT_RX4P
J6-79
USBC0_NOVA_TXBN
J4-51
VIN_ALW
J7-73
AGPIO89
J5-43
GFX_SLOT_RX5N
J6-83
USBC0_NOVA_TXBP
J4-53
VIN_ALW
J7-70
AGPIO90
J5-21
GFX_SLOT_RX5P
J6-85
USBC1_DN
J4-66
VIN_ALW
J7-78
APU_ALERT#
J5-72
GFX_SLOT_RX6N
J6-89
USBC1_DP
J4-64
VIN_ALW
J7-67
APU_I2C0_SCL_1V8
J5-11
GFX_SLOT_RX6P
J6-91
USBC1_RXAN
J4-60
VIN_ALW
J7-75
APU_I2C0_SDA_1V8
J5-9
GFX_SLOT_RX7N
J6-95
USBC1_RXAP
J4-58
ACP_WOV_DMIC_DAT1
J7-48
APU_I2C1_SCL_1V8
J5-13
GFX_SLOT_RX7P
J6-97
USBC1_RXBN
J4-72
ACP_WOV_DMIC_DAT2
J7-42
APU_I2C1_SDA_1V8
J5-27
GFX_SLOT_TX0N_C
J6-6
USBC1_RXBP
J4-70
ACP_WOV_DMIC_DAT3
J7-56
APU_PROCHOT#
J5-81
GFX_SLOT_TX0P_C
J6-8
USBC1_TXAN
J4-57
AZ_BITLK/SW1_MCLK/TDM0_BCLK_HDR
J7-44
APU_RST#
J5-74
GFX_SLOT_TX1N_C
J6-18
USBC1_TXAP
J4-59
CONF_4
J7-36
APU_SCLK0_1V8
J5-19
GFX_SLOT_TX1P_C
J6-20
USBC1_TXBN
J4-63
CONF_5
J7-6
APU_SCLK1_1V8
J5-37
GFX_SLOT_TX2N_C
J6-30
USBC1_TXBP
J4-65
DOUT_BT_HDR
J7-52
APU_SDATA0_1V8
J5-17
GFX_SLOT_TX2P_C
J6-32
USBC4_DN
J4-92
GPP_CLK5N_R
J7-41
APU_SDATA1_1V8
J5-39
GFX_SLOT_TX3N_C
J6-42
USBC4_DP
J4-90
GPP_CLK5P_R
J7-39
APU_SFH_SCL
J5-67
GFX_SLOT_TX3P_C
J6-44
USBC4_SS+_RXAN
J4-86
GPP_CLK6N_R
J7-45
APU_SFH_SDA
J5-38
GFX_SLOT_TX4N
J6-54
USBC4_SS+_RXAP
J4-84
GPP_CLK6P_R
J7-47
APU_SIC
J5-82
GFX_SLOT_TX4P
J6-56
USBC4_SS+_RXBN
J4-96
GPP_RX10N
J7-10
APU_SID
J5-90
GFX_SLOT_TX5N
J6-66
USBC4_SS+_RXBP
J4-98
GPP_RX10P
J7-12
APU_THERMTRIP#
J5-15
GFX_SLOT_TX5P
J6-68
USBC4_SS+_TXAN
J4-69
GPP_RX11N
J7-33
AZ_RST#/SW0_MDATA1/TDM0_DIN_HDR
J5-84
GFX_SLOT_TX6N
J6-78
USBC4_SS+_TXAP
J4-71
GPP_RX11P
J7-35
AZ_SDIN0/SW0_MDATA3_HDR
J5-64
GFX_SLOT_TX6P
J6-80
USBC4_SS+_TXBN
J4-75
GPP_RX12N
J7-5
AZ_SDIN1/SW0_MCLK_TDM1_BCLK_HDR
J5-89
GFX_SLOT_TX7N
J6-90
USBC4_SS+_TXBP
J4-77
GPP_RX12P
J7-3
AZ_SDIN2/SW0_MDATA0/TDM1_OUT_HDR
J5-66
GFX_SLOT_TX7P
J6-92
USBN3
J4-89
GPP_TX10N
J7-11
AZ_SDOUT/SW0_MDATA2/TDM0_DOUT_HDR
J5-98
GPP_CLK1N_R
J6-29
USBN6
J4-95
GPP_TX10P
J7-9
AZ_SYNC/SW1_MDATA0/TDM0_FRM_HDR
J5-100
GPP_CLK1P_R
J6-31
USBN7
J4-99
GPP_TX11N
J7-17
CONF_1
J5-92
GPP_CLK2N_R
J6-35
USBP3
J4-91
GPP_TX11P
J7-15
CONF_2
J5-61
GPP_CLK2P_R
J6-37
USBP6
J4-93
GPP_TX12N_C
J7-21
CONF_3
J5-97
GPP_CLK3N_R
J6-48
USBP7
J4-97
GPP_TX12P_C
J7-23
CONF_6
J5-85
GPP_CLK3P_R
J6-50
DP0_AUXN
J4-4
INT_CLK_REQ3#
J7-38
DP_STERESOSYNC
J5-80
GPP_RX13N
J6-17
DP0_AUXP
J4-6
LRCLK_BT_HDR
J7-54
EGPIO67
J5-3
GPP_RX13P
J6-19
DP0_BLON
J4-35
RTC_CLK2_R
J7-40
EGPIO74
J5-7
GPP_RX14N
J6-11
DP0_BLPWM
J4-39
SDIN_BT_HDR
J7-50
EGPIO76
J5-5
GPP_RX14P
J6-13
DP0_DIGON
J4-37
UART4_CTS#
J7-4
EGPIO78
J5-35
GPP_RX15N
J6-5
DP0_HPD
J4-33
UART4_INTR
J7-2
EGPIO79
J5-8
GPP_RX15P
J6-7
DP0_TX0N
J4-10
UART4_TXD
J7-34
ESPI_CLK_EC
J5-6
GPP_RX8N
J6-47
DP0_TX0P
J4-12
USB5_SS+_RXN
J7-24
ESPI_DAT0_EC
J5-22
GPP_RX8P
J6-49
DP0_TX1N
J4-18
USB5_SS+_RXP
J7-22
ESPI_DAT1_EC
J5-14
GPP_RX9N
J6-41
DP0_TX1P
J4-16
USB5_SS+_TXN
J7-16
ESPI_DAT2_EC
J5-18
GPP_RX9P
J6-43
DP0_TX2N
J4-24
USB5_SS+_TXP
J7-18
ESPI_DAT3_EC
J5-20
GPP_TX13N_C
J6-36
DP0_TX2P
J4-22
USBC5_RX2N
J7-57
FANOUT0_1V8
J5-47
GPP_TX13P_C
J6-38
DP0_TX3N
J4-28
USBC5_RX2P
J7-59
FANTACH0_1V8
J5-45
GPP_TX14N
J6-24
DP0_TX3P
J4-30
USBC5_TX2N
J7-29
INTRUDER_ALERT
J5-50
GPP_TX14P
J6-26
DP1_AUXN
J4-9
USBC5_TX2P
J7-27
INT_CLK_REQ0#
J5-46
GPP_TX15N
J6-12
DP1_AUXP
J4-11
USBN2
J7-30
INT_CLK_REQ1#
J5-44
GPP_TX15P
J6-14
DP1_BLON
J4-76
USBN5
J7-53
INT_CLK_REQ2#
J5-42
GPP_TX8N
J6-96
DP1_BLPWM
J4-80
USBN6
J4-95
INT_SENSOR_0
J5-36
GPP_TX8P
J6-98
DP1_DIGON
J4-78
USBP2
J7-28
INT_SENSOR_1
J5-65
GPP_TX9N
J6-84
DP1_HPD
J4-41
USBP5
J7-51
KR10G_PHY1_INTR#_1V8
J5-32
GPP_TX9P
J6-86
DP1_TX0N
J4-5
3.3V_ALW_SOM
J7-58
M2_SSD0_LED#
J5-2
SOM_ENABLE
J6-74
DP1_TX0P
J4-3
3.3V_ALW_SOM
J7-60
MDIO0_SCL
J5-24

 

 

DP1_TX1N
J4-17
3.3V_ALW_SOM
J7-62
MDIO0_SDA
J5-10

 

 

DP1_TX1P
J4-15

 

 

MDIO1_SCL
J5-40

 

 

DP1_TX2N
J4-23

 

 

MDIO1_SDA
J5-59

 

 

DP1_TX2P
J4-21

 

 

MDIO2_SCL
J5-68

 

 

DP1_TX3N
J4-29

 

 

MPM_EVENT#
J5-33

 

 

DP1_TX3P
J4-27

 

 

PCIE_RST#
J5-79

 

 

DP2_AUXN/USBC0_SBTX
J4-36

 

 

PCIE_RST1#
J5-31

 

 

DP2_AUXP/USBC0_SBRX
J4-34

 

 

PCIE_WAKE#
J5-49

 

 

DP2_HPD
J4-79

 

 

PWR_BTN#
J5-51

 

 

DP3_HPD
J4-85

 

 

SATA_ACT_1.8V#
J5-25

 

 

DP4_AUXN
J4-81

 

 

SENSOR_MISC1
J5-57

 

 

DP4_AUXP
J4-83

 

 

SENSOR_MISC2
J5-71

 

 

DP4_HPD
J4-87

 

 

SENSOR_MISC3
J5-63

 

 

 

 

 

 

SENSOR_MISC4
J5-69

 

 

 

 

 

 

SYS_RST#
J5-48

 

 

 

 

 

 

SYS_S0_PWR_EN
J5-12

 

 

 

 

 

 

SYS_S3_PWR_EN
J5-41

 

 

 

 

 

 

TMON_I2C_SCL
J5-54

 

 

 

 

 

 

TMON_I2C_SDA
J5-56

 

 

 

 

 

 

TPAD_INT#
J5-23

 

 

 

 

 

 

UART0_CTS#
J5-99

 

 

 

 

 

 

UART0_INTR
J5-94

 

 

 

 

 

 

UART0_RTS#
J5-96

 

 

 

 

 

 

UART0_RXD
J5-75

 

 

 

 

 

 

UART0_TXD
J5-73

 

 

 

 

 

 

UART2_TXD
J5-88

 

 

 

 

 

 

USBC_I2C_SCL
J5-62

 

 

 

 

 

 

USBC_I2C_SDA
J5-87

 

 

 

 

 

 

USBC_PD_INT
J5-52

 

 

 

 

 

 

USB_OCP#
J5-60

 

 

 

 

 

 

OrCad Symbols

In the following link you will find a PDF and OrCad Symbols for the NIO board-to-board connectors, to which the SoM (Male) Connectors are inserted: 

  1. NIO BtB Connectors - PDF

  2. NIO BtB Connectors - OrCad Symbols

Differential Signals Impedance

In this Excel, you will find a list for the impedance for each differential signal. 

Note: All differential pairs are 90-Ohm, the rest are GPIOs/Single-Ended signals which are 50-Ohm by default.

Thermal coupling

First stage thermal coupling in cartridge

The cartridge is assembled in the factory and should not be disassembled. It provides 1st stage cooling for the processor and power FETs.

2nd stage thermal coupling (heatplate, NVME, RAM, cartridge)

  • Thermal grease should be applied on heatplate. Heatplate should be attached to a cold plate.

  • Thermal pad should be applied on NVME

  • If device is intended to work at high ambient temperature it is advised to apply thermal gel between SODIMMs and RAM cover and thermal grease on top side of RAM cover

  • The frame of the skirt is thermally coupled to the cold plate. Consider applying thermal paste on the frame of the skirt.

Power Consumption

SmartShift Technology for Optimized Power Management

One of the key features of our System on Module, integrated with AMD Ryzen™ processors, is the SmartShift technology. This innovative feature allows for dynamic adjustment of power allocation between the CPU and other system components. By intelligently shifting power where it's needed most, SmartShift enhances overall performance and efficiency, making it an ideal solution for power-sensitive applications.

Controlling CPU Power Consumption

With SmartShift, you can precisely control the power consumption of the CPU, tailoring it to fit the specific needs of your application. This capability is especially beneficial in scenarios where power efficiency is crucial, such as in portable or battery-operated devices. You can set a limit to the CPU power consumption, for example, capping it at a specific wattage to balance performance with power usage.

Configuring CPU Power Limits in BIOS

To configure the CPU power limits, you can access the BIOS settings of our System on Module. We provide a detailed guide on how to navigate these settings and effectively set the desired power caps for your application.

For step-by-step instructions on accessing and modifying these settings, please visit our detailed BIOS configuration page here: Bedrock V3000 BIOS Settings - Power Screen.

By leveraging the SmartShift technology and configuring your CPU power settings via BIOS, you can optimize your system’s performance and power consumption, leading to a more efficient and tailored usage according to your specific requirements. This section of the manual ensures that you have all the necessary tools and knowledge to take full advantage of the innovative features provided by our System on Module.

To demonstrate the efficacy and benefits of the SmartShift technology in our System on Module (SoM), extensive measurements have been conducted using a SoM based on the AMD Ryzen™ 7 7840HS processor paired with the Networking & I/O extension board (NIO). These tests were aimed at validating how effectively SmartShift manages power distribution under various operational conditions.

SmartShift Configuration Parameters:

The SmartShift feature is controlled through four key parameters in the BIOS Power tab, which allow for precise management of power distribution and consumption:

  • APU Only sPPT Limit: Sets the peak power limit that the Accelerated Processing Unit (APU) can consume.

  • Sustained Power Limit: Defines the sustained power threshold for long-term performance stability.

  • Fast PPT Limit: Regulates the rapid power allowance for short bursts of intensive processing.

  • Slow PPT Limit: Controls the lower power threshold, suitable for maintaining efficiency during less demanding tasks.

Measurement Results

The following table illustrates the power consumption results (in Watts) observed under various settings of these parameters. These measurements provide clear insights into how SmartShift adjusts power usage dynamically, ensuring optimal performance and efficiency across different workloads and operational states.

The tests outlined in the table above were conducted while the system was running CineBench R23, specifically utilizing the Multi-Core test mode. This benchmarking tool is widely recognized for its ability to stress multiple CPU cores simultaneously, making it an ideal platform for evaluating the performance of the SmartShift technology under high computational loads. By conducting the tests in this environment, we ensure that the measurements accurately reflect the capabilities of SmartShift to dynamically manage and optimize power consumption during intensive processing tasks.

Setting Description

APU only sPPT Limit (mW)

Sustained PowerLimit (SPL) (mW)

Fast PPT limit
(mW)

Slow PPT Limit
(mW)

Scope Measurment [Cinebench Multi]: Total Power [W]

Setting Description

APU only sPPT Limit (mW)

Sustained PowerLimit (SPL) (mW)

Fast PPT limit
(mW)

Slow PPT Limit
(mW)

Scope Measurment [Cinebench Multi]: Total Power [W]

 

 

Energy Saving

5000

5000

5000

5000

14.7

8000

8000

8000

8000

14.9

10000

10000

10000

10000

16.5

20000

20000

20000

20000

25.1

 

Balanced Performance

30000

30000

30000

30000

37.5

40000

40000

40000

40000

45.5

54000

54000

54000

54000

58.3

 

 

High Performance

60000

60000

60000

60000

63

65000

65000

65000

65000

68

70000

70000

70000

70000

74

75000

75000

75000

75000

77

80000

80000

80000

80000

78.3

90000

90000

90000

90000

78.6

Note: the measurements were performed with 19V input voltage.


Power Input

The recommended input range for the SoM is 12V-24V.

Note: there is no reverse polarity protection on the SoM, please be careful not to confuse between the “+” and “-” signs. (Red is Positive “+, Black is Negative “-”)

SolidRun uses Molex 1053071202 Connector to interface between the SoM power input and the Phoenix Connecter.

Flashing BIOS and MPS Power Controller
(Soon)

SolidRun Ltd.